Evaluation of Production Cost Savings from Consolidation of Balancing Authorities in the U.S. Western Interconnection under High Wind and Solar Penetration

Tony B. Nguyen, Nader Samaan, and Chunliang Jin

Presenter: Tony B. Nguyen

Symposium to honor Professor M. A. Pai
Urbana, IL, October 15, 2015
Agenda

- Overview
- Production cost model
- Study scenarios
- Simulation results
- Conclusions
Overview

Challenge for BAs to operate independently:
- Increasing variability and uncertainty associated with higher penetration level of renewables
- Higher operating cost

Benefit from cooperation between BAs
- Larger geographic area, distributed resources
- Mitigate the impact of variability and uncertainty
- More efficient unit commitment and economic dispatch
- Sharing of contingency reserve

Production cost analysis
- Determine the maximum benefits that could be achieved in a consolidated WECC BA (CBA)
- Analyze two different scenarios of variable generation (VG) penetration: 11% and 33% as percentage of WECC projected energy demand in 2020
Production cost model

- The study model is based on the WECC Transmission Expansion Planning Policy Committee (TEPPC) 2020 case
 - Nodal model of the WECC system (>17k buses, >20k transmission lines/transformers)
 - Based on the WECC 2020 high summer power flow case
 - Several modifications

- BA structure
 - 32 BAs
 - 39 load areas
 - 86 flowgates between BAs (hurdle rate can be applied)
 - Operating reserve of 4% of BAs weekly peak load
Load shapes for 2020 are derived from the 2006 load shapes and load forecast for 2020.

BA total load is distributed between load buses within the BA based on the 2012 heavy summer base case.

Wind and solar contributions are 8% and 3% of the WECC total demand for 2020 respectively.
Hydro plant model

- Hydro production is based on an average year (2006)
- For plans that do not have 2006 data available, data in 2002, 2003, or 2007 are used

Hydro power plant modeling: 3 models

- Proportional load following (PLF): generation schedule is based on load profile
- Hydro thermal coordination: generation schedule is first based on PLF, and then a portion of the remain is dispatched as a thermal unit
- Fixed shape: generation schedule is same as hourly generation profile input
Several characteristics of thermal plant are input in the model:

- Minimum and maximum ramp rates
- Minimum up-times and down-times
- Minimum and maximum generation capacities
- Planned and forced outages, heat rate curves, emission rates
- O&M cost and start up cost

The median Henry Hub gas price is $7.28/MMBtu (2010 dollars)

The average coal price is $1.69/MMBtu (2010 dollars)
Transmission model

Only include:
- Existing transmission
- Transmission needed for future reliability when integrate additional generation
- Projects with high likelihood of being in service in 2020

Add additional transmission when the capacity is not adequate to handle additional renewables

Transmission losses are not modeled explicitly but are included in the load forecast
Comparison between Different Market Structures

<table>
<thead>
<tr>
<th></th>
<th>Current hourly-scheduling between WECC BAs</th>
<th>Centralized Market</th>
<th>Intra-hour scheduling between WECC BAs</th>
<th>EIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day-ahead forecasts</td>
<td>UC/ED at BA level with BA exchange</td>
<td>UC/ED at WECC level</td>
<td>UC/ED at BA level with BA exchange</td>
<td>UC/ED at BA level with BA exchange</td>
</tr>
<tr>
<td>Hour-ahead forecasts</td>
<td>UC/ED at BA level with FINAL BA exchange</td>
<td>UC/ED at WECC level</td>
<td>UC/ED at BA level with BA exchange</td>
<td>UC/ED at BA level with FINAL BA exchange</td>
</tr>
<tr>
<td>Intra-Hour</td>
<td>ED to meet imbalance at BA level</td>
<td>ED to meet imbalance at WECC level</td>
<td>ED at BA level with FINAL exchange</td>
<td>ED to meet imbalance at WECC level</td>
</tr>
<tr>
<td>Regulation</td>
<td>At BA level</td>
<td>WECC level</td>
<td>At BA level</td>
<td>At BA level</td>
</tr>
<tr>
<td>Hurdle rate on BA to BA transactions</td>
<td>Yes (DA, HA)</td>
<td>No (DA, HA, RT)</td>
<td>Yes (DA, HA, RT)</td>
<td>Yes (DA, HA) No (RT)</td>
</tr>
<tr>
<td>Contingency and Balancing Reserves</td>
<td>Individual BA obligation</td>
<td>Consolidate BA obligation (lower requirements)</td>
<td>Individual BA obligation</td>
<td>Individual BA obligations</td>
</tr>
</tbody>
</table>
Use PROMOD IV (scenarios 1 to 3) and PLEXOS (scenario 4) to determine production costs for the following study scenarios.

Scenario 1: BA structure like it is today: BAs are separate, transmission congestion exists, certain patterns of scheduled interchanges.

Scenario 2: Full consolidation, copper sheet with no transmission congestion.

Scenario 3: Full consolidation, transmission congestion exists.

Scenario 4: BA structure like today’s with 10-min intra hour scheduling.
Results Comparison between Different Simulation Cases (11% VG)

<table>
<thead>
<tr>
<th>Simulation Scenario</th>
<th>Scenario 1: Current WECC BA Structure (20 $/ MWh Unit Commitment Transmission Hurdle Rate)</th>
<th>Scenario 2: Consolidated WECC (CBA) Copper Sheet</th>
<th>Scenario 3: Consolidated WECC with transmission congestion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Case 1A</td>
<td>Case 1B</td>
<td>Case 1C</td>
</tr>
<tr>
<td>Assumed Dispatch Transmission Hurdle Rate</td>
<td>0$/MWh</td>
<td>$5/MWh</td>
<td>$10/MWh</td>
</tr>
<tr>
<td>Nodal model type</td>
<td>Full nodal</td>
<td>Full nodal</td>
<td>Full nodal</td>
</tr>
<tr>
<td>Contingency reserve</td>
<td>BA level</td>
<td>BA level</td>
<td>BA level</td>
</tr>
<tr>
<td>Total Gen Cost (K$)</td>
<td>18,782,162</td>
<td>18,806,197</td>
<td>18,849,962</td>
</tr>
</tbody>
</table>

Case 3B denotes the scenario with no dispatch transmission hurdle rate, which results in the lowest total generation cost.
Reduction range from $445 Million (2.4%) with no hurdle rates for transmission to $609 Million (3.2%) with the 15 $/MWh flat dispatch hurdle rates

In addition to that, another $240 Million of reduction can be achieved in case 2 (copper sheet consolidation).
Generation Mix Comparison between Different Cases (11% VG)

<table>
<thead>
<tr>
<th>Percentage of each generation type in serving yearly demand</th>
<th>Case 1A</th>
<th>Case 1B</th>
<th>Case 1C</th>
<th>Case 1D</th>
<th>Case 2</th>
<th>Case 3A</th>
<th>Case 3B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar</td>
<td>3.1%</td>
<td>3.1%</td>
<td>3.1%</td>
<td>3.1%</td>
<td>3.1%</td>
<td>3.1%</td>
<td>3.1%</td>
</tr>
<tr>
<td>Wind</td>
<td>8.0%</td>
<td>8.0%</td>
<td>8.0%</td>
<td>8.0%</td>
<td>8.0%</td>
<td>8.0%</td>
<td>8.0%</td>
</tr>
<tr>
<td>Geothermal</td>
<td>3.5%</td>
<td>3.5%</td>
<td>3.5%</td>
<td>3.5%</td>
<td>3.5%</td>
<td>3.5%</td>
<td>3.5%</td>
</tr>
<tr>
<td>Biomass</td>
<td>1.6%</td>
<td>1.6%</td>
<td>1.7%</td>
<td>1.7%</td>
<td>1.8%</td>
<td>1.7%</td>
<td>1.7%</td>
</tr>
<tr>
<td>Hydro</td>
<td>24.8%</td>
<td>24.8%</td>
<td>24.8%</td>
<td>24.8%</td>
<td>24.8%</td>
<td>24.8%</td>
<td>24.8%</td>
</tr>
<tr>
<td>Other Steam</td>
<td>2.2%</td>
<td>2.2%</td>
<td>2.3%</td>
<td>2.3%</td>
<td>1.2%</td>
<td>2.0%</td>
<td>1.9%</td>
</tr>
<tr>
<td>CT</td>
<td>7.9%</td>
<td>7.9%</td>
<td>7.9%</td>
<td>7.9%</td>
<td>8.0%</td>
<td>7.9%</td>
<td>7.9%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>16.9%</td>
<td>16.9%</td>
<td>16.9%</td>
<td>17.1%</td>
<td>16.6%</td>
<td>17.0%</td>
<td>16.9%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>30.6%</td>
<td>30.6%</td>
<td>30.5%</td>
<td>30.2%</td>
<td>31.2%</td>
<td>30.7%</td>
<td>30.9%</td>
</tr>
</tbody>
</table>

Legend:
- **Solar**
- **Wind**
- **Geothermal**
- **Biomass**
- **Hydro**
- **Other Steam**
- **CT**
- **Nuclear**
- **CC**
- **Coal**
A Tool Developed for Results Visualization: Comparision of 1A and 3B (GWh)
Transmission system expansion for 33% VG

- With 33% of VG introduced, the existing transmission is not adequate and needs to expand
- Initial expansion is based on past reports (zonal)
- More detailed expansion is iterated using the components of LMP at buses where VG is introduced

\[
\text{LMP}_{\text{bus}} = \text{LMP}_{\text{reference}} + \text{LMP}_{\text{loss}} + \text{LMP}_{\text{congestion}}
\]

- Decomposition of \(\text{LMP}_{\text{congestion}}\) provides which transmission lines/transformers/paths need to be upgraded (increase their limits)
- How much to increase their limits? Engineering judgment with some iterations
Implementation of the expansion for 33% VG

Transmission lines/transformers:
- Increase lines/transformer limits
- Scale line resistance, reactance, and charging accordingly

Transmission paths:
- Increase the path limits if its components are not at their thermal limits
- Increase both the path limits and its component limits if its component(s) is at thermal limits
Results Comparison between Different Simulation Cases (33% VG)

Simulation Scenario

<table>
<thead>
<tr>
<th>Simulation Scenario</th>
<th>Scenario 1: Current WECC BA Structure (20 $/ MWh Unit Commitment Transmission Hurdle Rate)</th>
<th>Scenario 2: Consolidated WECC (CBA) Copper Sheet</th>
<th>Scenario 3: Consolidated WECC with transmission congestion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Case 1A</td>
<td>Case 1C</td>
<td>Case 1D</td>
</tr>
<tr>
<td>Assumed Dispatch Transmission Hurdle Rate</td>
<td>0$/MWh</td>
<td>$5/MWh</td>
<td>$10/MWh</td>
</tr>
<tr>
<td>Nodal model type</td>
<td>Full nodal</td>
<td>Full nodal</td>
<td>Full nodal</td>
</tr>
<tr>
<td>Contingency reserve</td>
<td>BA level</td>
<td>BA level</td>
<td>BA level</td>
</tr>
<tr>
<td>Total Gen Cost (K$)</td>
<td>12,299,308</td>
<td>12,336,721</td>
<td>12,397,077</td>
</tr>
</tbody>
</table>
Reduction ranges from $442 Million (3.7%) with no hurdle rates for transmission to $636 Million (5.2%) with the 15 $/MWh flat dispatch hurdle rates.

In addition to that, another $980 Million of reduction can be achieved in case 2 (copper sheet consolidation).

<table>
<thead>
<tr>
<th>Case</th>
<th>Annual Production Cost Reduction (K$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>442,126</td>
</tr>
<tr>
<td>1B</td>
<td>479,540</td>
</tr>
<tr>
<td>1C</td>
<td>539,896</td>
</tr>
<tr>
<td>1D</td>
<td>635,817</td>
</tr>
</tbody>
</table>
Generation Mix Comparison between Different Cases (33% VG)

Percentage of each generation type in serving yearly demand

<table>
<thead>
<tr>
<th>Case</th>
<th>Solar</th>
<th>Wind</th>
<th>Geothermal</th>
<th>Biomass RPS</th>
<th>Hydro</th>
<th>Other</th>
<th>CT</th>
<th>Nuclear</th>
<th>CC</th>
<th>Coal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>5.9%</td>
<td>22.4%</td>
<td>3.4%</td>
<td>1.2%</td>
<td>24.8%</td>
<td>8.7%</td>
<td></td>
<td>7.5%</td>
<td></td>
<td>23.1%</td>
</tr>
<tr>
<td>1B</td>
<td>5.9%</td>
<td>22.4%</td>
<td>3.4%</td>
<td>1.2%</td>
<td>24.8%</td>
<td>8.7%</td>
<td></td>
<td>7.4%</td>
<td></td>
<td>23.1%</td>
</tr>
<tr>
<td>1C</td>
<td>5.9%</td>
<td>22.3%</td>
<td>3.4%</td>
<td>1.3%</td>
<td>24.8%</td>
<td>8.8%</td>
<td></td>
<td>7.4%</td>
<td></td>
<td>23.0%</td>
</tr>
<tr>
<td>1D</td>
<td>5.9%</td>
<td>22.3%</td>
<td>3.4%</td>
<td>1.3%</td>
<td>24.8%</td>
<td>9.0%</td>
<td></td>
<td>7.3%</td>
<td></td>
<td>22.8%</td>
</tr>
<tr>
<td>2</td>
<td>6.0%</td>
<td>22.8%</td>
<td>3.5%</td>
<td>1.1%</td>
<td>24.8%</td>
<td>6.5%</td>
<td></td>
<td>7.5%</td>
<td></td>
<td>25.3%</td>
</tr>
<tr>
<td>3A</td>
<td>5.9%</td>
<td>22.3%</td>
<td>3.4%</td>
<td>1.2%</td>
<td>24.8%</td>
<td>8.2%</td>
<td></td>
<td>7.4%</td>
<td></td>
<td>23.8%</td>
</tr>
<tr>
<td>3B</td>
<td>5.9%</td>
<td>22.3%</td>
<td>3.4%</td>
<td>1.2%</td>
<td>24.8%</td>
<td>8.1%</td>
<td></td>
<td>7.4%</td>
<td></td>
<td>23.9%</td>
</tr>
</tbody>
</table>
Compare Annual Savings in Production Cost between Scenario 1 and Case 3B for 11% and 33% VG

Annual Production Cost Reduction (%) Due to Consolidation

Cases:
- Case 1A
- Case 1B
- Case 1C
- Case 1D

Graph showing percentage reduction in production cost for 11% and 33% VG.
Production Cost Simulation Approach to Determine the Benefit of 10min Scheduling

Day Ahead
- 24-hour optimization window
- Day-ahead forecast hourly load profiles
- Day-ahead forecast hourly wind and solar profiles
- BA level contingency reserve.
- BA level flexibility (load following and regulation reserves)

Hour Ahead
- 1-hour optimization window with 5 hourly look ahead
- Hour-ahead forecast hourly load profiles
- Hour-ahead forecast hourly wind and solar profiles
- BA level contingency reserve.
- BA level flexibility (load following and regulation reserves)
- Allow the commitment and decommitment of units that can start/shutdown in less than 6 hours

10-min Real Time, 10min BA interchange (10-min schedules)
- One 10-min plus five 10-min look-ahead optimization window
- Actual 10min average loads profiles
- Actual 10min average wind and solar profiles.
- BA level contingency reserve.
- BA level regulation reserves
- DA Unit Commitment
- Allow the 10-min exchanges between BA’s

10-min Real Time, Hourly BA interchange (BAU)
- One 10-min plus five 10-min look-ahead optimization window
- Actual 10min average loads profiles
- Actual 10min average wind and solar profiles.
- BA level contingency reserve.
- BA level regulation reserve.
- DA Unit Commitment
- Freeze the hourly exchanges between BA’s (within L10 of BA)
Conclusions

- BA consolidation is one approach to mitigate challenging problems for operators, especially for systems with high renewable generation
 - More efficient UC/ED
 - Lower reserve requirement
 - Smaller load and renewable forecast error
- Significant reduction in production cost: $440 M - $610 M for the studied year (2020)
Questions?

Contacts:

Tony B Nguyen

Phone: (509) 375-2816
Email: tony.nguyen@pnl.gov
Modeling of Net Exchange Constraint in BAU
(1) ACE Definition for a Balancing Authority

\[\text{ACE} = (\text{NIA} - \text{NIS}) - 10B(\text{FA} - \text{FS}) - \text{IME} \]

where:
ACE – Area Control Error
NIA – Sum of actual flows on tie lines
NIS – Sum of pre-scheduled flows on tie lines
B – Frequency Bias Setting (MW/0.1 Hz) for the BA
FA – Actual frequency
FS – Scheduled frequency
IME – Meter error correction factor
Modeling of Net Exchange Constraint
(2) ACE Requirement

\[
\text{AVG}_{10\text{-minute}}(\text{ACE}) \leq L_{10}
\]

“Each Balancing Authority shall operate such that its average ACE for at least 90% of clock-ten-minute periods (6 non-overlapping periods per hour) during a calendar month is within a specific limit, referred to as \(L_{10}\).”

\[
L_{10} = 1.65\epsilon_{10} \sqrt{(-10B_i)(-10B_S)}
\]

\(\epsilon_{10}\): Constant derived from the targeted frequency bound
\(B_i\): Frequency Frequency Bias Setting for the BA under study.
\(B_S\): Sum of Frequency Bias Settings of BAs

RT 10min Net interchange Constraint
(3)Implementation in PLEXOS

- Scheduled hourly net interchange for each BA (NIS) is calculated from HA simulation.
- The following constraint is imposed on the 10-min net interchange for each BA (NIA):
 \[\text{NIS} - L_{10} \leq \text{NIA} \leq \text{NIS} + L_{10} \]
- The addition of this constraint results in more realistic presentation of BAU case.
- Penalty of violating this constrain needs to be carefully coordinated with USE and maximum monthly hydro energy violation constraints.
Benefit of 10min schedules vs. hourly schedules