Evolution of Control for the Power Grid

Anjan Bose
Washington State University
Pullman, WA, USA

PaiFest
In Honor of Prof. M. A. Pai
Urbana-Champaign, IL
October 15, 2015
The Past (before 1960s)

- Hard wired metering
- Ink chart recording
- Light and sound alarming
- Hard wired remote switching
- Analog Load Frequency Control (1930s)
- Economic Dispatch (1950s)
- ED was first to go digital
The Present (since 1960s)

- The digital control center (SCADA-AGC)
- The RTU to gather digital data at substation
- Comm. channel from sub to control center (CC)
- The SCADA
 - The Data Acquisition from RTU to CC
 - The Supervisory Control signal from CC to RTU
- The screen based operator display
- Automatic Generation Control (AGC)
 - The digital algorithm for ED
 - The digital version of LFC
Communication for Power System

- Analog measurements
- Digital states

Third Party

Control Center

RTU

RTU

RTU
The Present (since 1970s)

• The Energy Management System (EMS)
• State Estimation (SE)
• Static Security Analysis (n-1)
• Dynamic Security Analysis (stability)
 ▪ Transient, Oscillatory, Voltage
• Optimal Power Flow based analysis
 ▪ Preventive Action calculation
 ▪ Corrective Action calculation
Real Time Network Analysis Sequence
West European Power Grid
Monitoring the Power Grid

- Visualization
 - Tabular, graphics
- Alarms
 - Overloaded lines, out-of-limit voltages
 - Loss of equipment (lines, generators, comm)
- State estimator
- Security alerts
 - Contingencies (loading, voltage, dynamic limits)
 - Corrective or preventive actions
Control of the Power Grid

• Load Following – Frequency Control
 ▪ Area-wise
 ▪ Slow (secs)

• Voltage Control
 ▪ Local and regional
 ▪ Slow to fast

• Protection
 ▪ Mostly local, few special protection schemes
 ▪ Fast

• Stability Control
 ▪ Local machine stabilizers
 ▪ Remote special protection schemes
 ▪ Fast
Operator Control of the Power Grid

• Change topology:
 ▪ Open/close Circuit Breakers

• Change control set points:
 ▪ Generation
 ▪ Voltage
 ▪ DC Line Power Flow
 ▪ AC Line Power Flow
Transmission Line Power Flow Control

Traditional

• Phase Shifting Transformer
 ▪ Controls taps to meet power flow setpoint

• Series Capacitors
 ▪ No control setpoint

FACTS

• Unified Power Flow Controller
 ▪ Large and expensive

• Smart Wires Router
 ▪ Modular and finer control
Evolution of Computer Architecture

• Special real time computers for SCADA-AGC
• Mainframe computer back ends for EMS
• Redundant hardware configuration with checkpoint and failover
• Multiple workstation configuration
 ▪ Back-up is more flexible
• Open architecture initiated
• CIM (Common Information Model) standard
Phase I – MMI Upgraded to Workstations

RTU Channels

Dual Ethernets

Original Equipment
Upgrade Equipment

SCADA FEP
HOST
Gateway
Workstations
Phase II – Addition of new EMS Functions
Phase III – Completed Migration to Open EMS Architecture
EMS Database

• Real-Time Database
 ▪ SCADA measurements
 ▪ Exchanged data
 ▪ Calculated data

• Static Database
 ▪ Connectivity of the grid
 ▪ Limits
 ▪ Model parameters
 ▪ External model parameters

• Historical Database
Data Reliability

• Data Communications
 ▪ Dual (redundant) channels

• Database Backup
 ▪ Checkpoint
 ▪ Bumpless Failover

• Backup Control Center
 ▪ Hot Standby or Shared Responsibility
 ▪ Changing Responsibility

Is this design vulnerable to cyber attacks?
Model Maintenance

Static Database Updating

• Internal Model
 ▪ Rigorous procedure

• External Model
 ▪ Exchange models in timely manner
 ▪ Requires data standard (CIM?)
 ▪ Requires standard synchronized procedure across interconnection
Real Time Data Exchange

• SCADA data from neighbors
 ▪ All or selected?
 ▪ How often?

• For what applications?
 ▪ Operator visibility
 • Match with external model displays
 • External outage data should be quick
 ▪ State Estimation
 • Match with external model
 • Update data before each SE run
Data Exchange Vertically

Between EMS and DMS

• From DMS
 ▪ Generation on distribution feeders
 ▪ Dynamic load availability
 ▪ Aggregated or individual measurements?

• From EMS
 ▪ Control signals for load response
 ▪ Control signals for distributed generation

How about the customer side (microgrids)?
Substation Automation

• Many substations have
 ▪ Data acquisition systems at faster rates
 ▪ Intelligent electronic devices (IED)
 ▪ Coordinated protection and control systems
 ▪ Remote setting capabilities

• Data can be time-stamped by satellite
Phasor Measurements
PMU Applications

• Event Analysis
 ▪ Historical PMU data have had the largest use in after-the-fact event analysis (largely off-line)

• Oscillation Detection and mitigation
 ▪ Detecting of suspect modes and determining damping has been implemented
 ▪ Operator mitigation has been implemented but automatic correction is not

• Linear State Estimator
 ▪ Several pilot projects have been in progress showing feasibility
DISTRIBUTION AUTOMATION

• Measurements along the feeder
• Switches, transformer taps, shunt capacitor and inductor controls
• Communications: Radio, Power Line Carrier, Fiber backhaul
• Closer voltage control increases efficiency
• Greater switching ability increases reliability
• Better coordination with outage management
• Sets up for distributed generation, demand response, electric vehicles or local storage
Pic of one feeder with the new equipment:

- Switched Capacitors
- Regulator
- Recloser

Francis & Cedar F3, Spokane, WA
DMS Applications

• Reconfiguration of feeder
 ▪ This is largely used to isolate a faulted section by remote control of switches
 ▪ Some implementations are doing this automatically

• Volt-VAr Control
 ▪ Conservation voltage reduction (CVR) lowers the voltage to save energy
 ▪ Optimal voltage profile is used to lower the losses
Building Automation

• Smart Meters
 ▪ Gateway between utility and customer
 ▪ Communication to utility and home appliances
 ▪ Time-of-day and real-time rates

• Applications
 ▪ Optimize energy efficiency and energy cost
 ▪ Demand response
 ▪ Can integrate generation (roof PV), storage (EV)

• Microgrids
Conclusions

• Controls at the substation level get more sophisticated every day
• Real time data collection increases at the subs
• Utilizing these measurements and controls at the system level remains difficult
• The communication infrastructure to move this data has to be built
• The software infrastructure to handle the data has to be built
• Application development and testing environments are needed